Selected papers

Resolution and configurational assignment of 3,4,5,6-tetrahydro-2-methyl-2,6-methano-2H-1-benzoxocine derivatives.
Kurtan, Tibor; Baitz-Gacs, Eszter; Majer, Zsuzsa; Benyei, Attila; Antus, Sandor.

X-ray structures of the tris(2,4-xylyl)phosphane and its trisulfonated derivative: Molecular architecture of a water-soluble sulfonated phosphane with propeller chirality.
Benyei, Attila C.; Gulyas, Henrik; Ozawa, Yoshiki; Kimura, Kimihiro; Toriumi, Koshiro; Kegl, Tamas; Bakos, Jozsef.

Quinoidal Tetrazines: Formation of a Fascinating Compound Class.
Bostai, Beatrix; Novak, Zoltan; Benyei, Attila C.; Kotschy, Andras.

Complexation properties of the di-, tri-, and tetraacetate derivatives of bis(aminomethyl)phosphinic acid.
Tircso, Gyula; Benyei, Attila; Kiraly, Robert; Lazar, Istvan; Pal, Robert; Brucher, Erno.

Contact:
Dr. Attila Bényei

*: 1 Egyetem tér, Debrecen, Hungary H-4032
☎: (36) 52-512900 Ext. 22486 FAX: (36) 52-512915
✉: abenyei@delfin.unideb.hu
Our Mission
Single crystal X-ray diffraction analysis for academic and industrial research

Our services
- Single crystal growing
- Solid state structure by single crystal X-ray diffraction
- Determination of absolute configuration
- Structure determination of contaminants
- *ab initio* structure determination from powder diffraction data
- Polymorph screening
- ATR-IR/XRPD study of polymorphs
- Comparison of polymorph structures
- Analysis of hydrogen bond patterns

Instrumentation
- Bruker-Nonius MACH3 Diffractometer
- Oxford Cryosystem Cryostream Cooler (90-370K)
- Thermo Haake computer programmable thermostat for single crystal growing (200-400K)
- CETI optical microscope
- PerkinElmer FT-IR spectrophotometers and FT-IR microscope
- State-of-the-art software and hardware resources
- Fully equipped chemistry laboratory
- Access to GC/HPLC/MS/NMR facilities

Example R+D projects
- Single crystal study of sulfonamide polymorphs, diffraction data, structure and hydrogen bond network
- ATR-FTIR – quantitative XRPD of API polymorphs:

References
200+ solved structures:
- Organic molecules
- Organometallics
20+ pharmaceutical R+D projects
40+ scientific papers
600+ independent citations